
J .  Ftuid Me&. (1982), vot. 120, pp. 91-152 

Printed in Great Bri tain 
91 

Nonlinear Marangoni convection in bounded layers. 
Part 1. Circular cylindrical containers 

By S. ROSENBLAT, S. H. DAVISAND G. M. HOMSY 
SHD Associates, Inc., 2735 Simpson St, Evanston, IL 60201, U.S.A. 

(Received 16 June 1981 and in revised form 14 December 1981) 

We consider liquid in a circular cylinder that  undergoes nonlinear Marangoni insta- 
bility. The upper free surface of the liquid is taken to  have large-enough surface tension 
that surface deflections are neglected. The side walls are adiabatic and impenetrable, 
and for mathematical simplicity the liquid is allowed to slip on the side walls. The 
linearized stability theory for heating from below gives the critical Marangoni number 
Mc as a function of cylinder dimensions, surface-cooling condition and Rayleigh 
number. The steady nonlinear convective states near Mc are calculated using an 
asymptotic theory, and the stability of these states is examined. At simple eigenvalues 
Mc the finite-amplitude states are determined. We find th  a t  the Prandtl number of 
the liquid influences the stability of axisymmetric states, distinguishing upflow a t  the 
centre from downflow. Near those aspect ratios corresponding to double eigenvalues 
Me, where two convective states of linear theory are equally likely, the nonlinear 
theory predicts sequences of transitions from one steady convective state to another 
as the Marangoni number is increased. These transitions are determined and discussed 
in detail. Time-periodic convection is possible in certain cases. 

1. Introduction 
Consider a uniform layer of liquid having infinite horizontal extent, bounded on the 

bottom by a solid plate and having a free surface on the top. When the plate is heated 
with respect to the gas a t  the free surface, a purely conductive static state may exist, 
in which /3 is the (constant) magnitude of the temperature gradient. If the free surface 
possesses surface tension g, the variations a(T)  of surface tension with temperature 
T can induce Marangoni instability. This thermocapillary instability was identified 
and explained by Pearson (1958), who showed, using a linear stability theory, that  
a critical value of the Marangoni number $1 must be exceeded before the conductive 
state becomes unstable. Here 

where daldT is the (negative) rate of change of surface tension with temperature, 
the subscript zero denoting a constant value a t  a given reference temperature To; d 
is the thickness of the undisturbed layer, and K~ and ,uo are respectively the thermal 
diffusivity and dynamic viscosity of the liquid. 

The critical value Mc of M depends on other parameters: the surface Biot number L,  
which is the non-dimensional version of the heat-transfer coefficient a t  the free surface, 
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and a capillary number C, which is a non-dimensional version of the mean surface 
tension u,, = u(To). Here 

C = Po K O / U O  d. (1.2) 

Pearson (1968) limited his analysis to C -+ 0, which means that the free surface does 
not deform as a result of disturbances. He finds, for L = 0 and a perfectly conducting 
lower boundary, M, 2: 79-6 in the absence of gravity. 

When a vertical gravity field is present, so that the layer is heated from below, 
Nield ( 1964) showed, using Pearson’s model, that  buoyancy-induced instabilities and 
thermocapillary instabilities reinforce one another. 

Since the work of Pearson and Nield, linear stability theory on the Marangoni 
convection problem has been extended in several directions to include two dynamical 
phases, C =l= 0, and further effects of an  imposed vertical gravity field (Scriven & 
Sternling 1964; Smith 1966; Zeren & Reynolds 1972). A recent survey (Smensen 1979) 
discusses these as well as many other extensions. Palmer & Berg (1971) find that the 
theory of Nield (1964) predicts well the experimental conditions for the onset of 
convection in shallow layers. 

As in the case of Rayleigh-BBnard convection due to buoyancy effects, the hori- 
zontal planform of the convective state and the amplitude of the motion (and heat 
transfer) are undetermined by linear stability theory. I n  addition as in Rayleigh- 
BBnard convection, the critical point M,, corresponding to the critical horizontal wave- 
number, is infinitely degenerate; there are an infinite number of plan forms allowable 
by linear theory. Nonlinear effects presumably select from this set those that appear 
in experiments. The first nonlinear analysis of Marangoni instability is due to Scanlon 
& Segel (1967). They consider an infinite-Prandtl-number fluid, an infinitely deep 
layer, and only two planform functions from the infinite set. Their prediction is that  
hexagonal-cells is the only planform that exists and is stable when the conductive 
state becomes unstable. Hexagons exist and are stable for an interval of M < Mc so 
that subcritical convection is predicted. They do not attempt to  enlarge the set of 
planform functions beyond the chosen two. However, their prediction is in qualitative 
accord with experimental observations. Koschmieder ( 1967) always found very 
regular hexagons in shallow layers, the regularity stemming from the precise thermal 
controls used. These pictures should be compared with those of BBnard (1900) who 
found irregular, polygonal cells in convection dominated by thermocapillarity. 

The only other nonlinear analysis of Marangoni instability is due to Kraska & Sani 
(1979). They considered 5ix planform functions (including those of Scanlon & Segel), 
and also completed a nonlinear analysis. However, they encountered difficulties in 
analysing the stability of their nonlinear states and found a lack of closure in adding 
any seventh state t o  the original six. These difficulties may be related to  the adjoint 
operator they defined, which seems not to be appropriate to the problem. 

I n  the present studies we address the problem of Marangoni instabilities in a cylinder 
of finite size. Our interest is to explore the nonlinear interactions near M = M,, and, 
in particular, transitions from one convective state to another that  may occur a t  
supercritical conditions. Given the difficulty of such a study, we make several simplify- 
ing assumptions. (i) We let the capillary number C -+ 0. Hence, the top free surface 
is non-deformable. I n  addition, we take the contact angle a t  the side walls to  be 
compatible with a flat free surface. Thus, in the basic, conductive state there are no 
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menisci, and in the convective state the free surface remains flat. (ii) In order to 
allow the linear stability theory to be solved using normal modes (separation of 
variables), we idealize the side-wall boundary conditions in the following way. The 
side wall consists of a circular cylinder through which there is zero heat flux and zero 
mass flow. However, we allow the wall to be 'slippery' SO that the no-slip condition is 
replaced by the condition of zero tangential vorticity. Clearly, such an idealization 
modifies the predictions of a theory. We discuss in detail some implications of this 
idealization and suggest how results of such a theory should be applied. 

Given the model described, we find the nonlinear convective states and determine 
their stability. Clearly the presence of the side wall makes the spectrum at M = Mc 
discrete so t,hat the complete behaviour can be examined. Of course, hexagonal cells 
for small containers will never appear, since the allowable cell shapes are dominated 
by the side-wall constraints. We obtain its behaviour and its amplitude, and hence 
can find all transport quantities of the convection. At certain aspect ratios two 
linearized modes are equally likely at  critical conditions. We analyse such double 
eigenvalues and find certain strong behaviours. The transitions as M is increased for 
aspect ratios on one side of the double eigenvalues differ substantially from those on 
the other side of the double eigenvalue. Such a demarcation of behaviours is character- 
istic of the nonlinearities, and hence should be observable in experiment. 

The technique of nonlinear stability theory we use is due to Rosenblat (1979), who 
makes an eigenfunction expansion of the nonlinear problem. This ' infinite-matrix ' 
form is systematically simplified by defining a new small parameter related to the 
separation of the eigenvalues (the critical Be) of the matrix. The results coincide with 
the usual weakly nonlinear bifurcation theory very near the first Me, but gives a wider 
range of validity. It is the wider range that allows us to examine the successive 
transitions. 

2. Formulation 
Consider a viscous liquid which partially fills a cylindrical container of circular 

cross-section. The mean depth of the liquid is d ,  and the radius of the cylinder is 
taken to be a* = ad, so that the aspect ratio (ratio of radius to mean depth) is a. 
The axis of the cylinder is antiparallel to the direction of gravity, and the upper 
surface of the liquid is open to an ambient gas. 

The liquid is assumed to be Newtonian, to have constant viscosity pto and to be heat 
conducting with constant thermal diffusivity K, and conductivity k,. The liquid-gas 
interface has a surface tension u*, which varies with temperature according to the 
formula 

(T* = q)-ua,(T: -To), (2.1) 

where u,, crl are constants, T,* is the temperature at the interface, and To a reference 
temperature. The Boussinesq approximation is assumed; the governing equations in 
the bulk of the liquid are the Navier-Stokes, continuity and energy-balance equations. 

We shall work in a cylindrical polar co-ordinate system with the origin at the centre 
of the bottom boundary. The mean depth of the liquid is at x* = d .  The lower boundary 
is assumed to be a rigid perfectly conducting plane. Surface tension acts at  the upper 
boundary, where the usual stress balance applies. The liquid is assumed to be cooled 
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a t  the upper boundary by heat transfer to the gas, characterized by a heat-transfer 
coefficient h. 

The lateral boundary is assumed to be adiabatic. If it were rigid, we would have the 
no-slip condition. However, we take the idealized, mathematically simpler condition 
that the side wall is a non-deformable surface on which the tangential vorticity 
vanishes. To complete the specification of the boundary conditions, we require a 
condition on the behaviour of the free surface where it meets the edge of the container. 
In  this paper, we shall assume that the ' contact angle' is fixed and is &r. 

Under these assumptions, there exists a solution to the basic equations which is 
the motionless state of heat conduction: 

v* E 0 ,  ( 2 . 2 ~ )  

T* = T,+/!?(d-z*), ( 2 . 2 b )  

( 2 . 2 c )  p* = POL1 - UP@ - z*)I, 

u* = uo, 7" = 0, 

T* = pog{(z* - d )  + frap(2 - d)2} I. 

In  ( 2 . 2 ) ,  the asterisks denote dimensional quantities; here T*  and T* are respectively 
the surface deflection above x* = d and the stress in the liquid. 

We now perturb the basic state ( 2 . 2 ) )  and a t  the same time introduce appropriate 
dimensionless forms of the equations and boundary conditions. We scale lengths on 
the depth d,  and write 

with r = ( r ,  4, x )  in cylindrical polar co-ordinates. Unit vectors in the corresponding 
directions will be denoted (i?) $ , a ) .  The velocity components are (u, e,  w). The liquid 
occupies the region 0 < r < a, 0 < z < 1 + 7 in this dimensionless co-ordinate system; 
the equation of the free surface S is 

r = r * / d ,  x = x* /d ,  17 = T* /d ,  ( 2 . 3 )  

2 = 1 + TP-1, t ) ,  ( 2 . 4 )  

where rl is the dimensionless position vector in the horizontal plane, and t is dimen- 
sionless time, defined below; the lateral boundary S, is r = a, 0 < x -= 1 + 7. 

Since our interest is focused on motions driven by surface-tension gradients, i t  is 
appropriate to base velocities on the Marangoni velocity scale V,, defined by 

VM = a,/!?d/Po. 

t = t * q f / d .  

The time scale will then be d/V',, so that we write 

The equations in the bulk of the liquid for the perturbation field quantities are 
found to be 

= V.T+M-'Rf%, ( 2 . 7 )  I 
T = -PI+ [VV + VVT], 

v . v  = 0, 
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The boundary conditions are as follows.' On the lower horizontal boundary 

S = O  ( z = O ,  O < r < a ) ,  (2 .1  1 a )  

v = O  ( x = O ,  O < r , < a ) .  (2 .11b)  

On the upper surface S ,  the heat-transfer condition reads 

n.VS = n . 2 -  l - L ( S - q )  on S.  ( 2 . 1 2 ~ )  

The kinematic condition becomes 

a' a' va' -+u-+---w=O on S. 
at ar r a+ (2 .12b)  

It is convenient to decompose the stress condition into an equation normal to  the 
surface and an equation tangential to the surface. If we write normal and tangential 
components as 

we obtain the dynamic surface conditions 

(T.n), = (7.n) .n,  (7.n)t = (7.  n) - [(7.n). n] n, 

G(q  + &STr2) + MC(7. n), - 2H{ 1 + MC(7 - S)} = 0 on S,  (2.12 c )  

(-r.n)t+nx{nxV(r-S)} = 0 onS, ( 2 . 1 2 4  

where H is the dimensionless mean curvature. 

there are 
On the lateral boundary S, we have that nL = F, and the boundary conditions 

(2 .13a ,  b )  
ae 
ar 
- = 0,  u =  0 onSi ,  

a aW 
-(Tv) = - = O 
ar ar 

on S,. 

The contact-angle condition becomes 

_ -  a' - o on r = a .  
ar 

( 2 . 1 3 ~ )  

(2 .14)  

Finally, we recall the stipulation that the mean depth of the liquid is d.  This is 
effectively a condition of volume conservation, and can be expressed as 

(2 .15 )  

The problem to be studied comprises the system of equations (2 .7) - (2 .10) ,  together 
with the conditions (2.11)-(  2.15). There are seven parameters appearing in the problem. 
These are: 

Marangoni number M = r1/3d2/ ,uOK0,  ( 2 . 1 6 ~ )  

Rayleigh number R = p o a ~ g d 4 / , u o ~ o ~  (2.16 b )  

Prandtl number P r  = , u o / p o ~ o ,  ( 2 . 1 6 ~ )  

capillary number C = p o K o / g o d ,  (2 .16d)  

aspect ratio a = a*/d,  (2 .16e)  
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Biot number L = hd/k,,  (2.16f) 

Bond number G = pogd2/go. (2 .16d 

For our purposes, we shall consider the Marangoni number as the principal para- 
meter. We shall determine M,, the critical value of M at which the conduction solution 
becomes unstable, as a function of the other parameters, that is 

Mc = Mc(R, Pr, G ,  C, L, a).  (2.17) 

We shall then investigate the properties of the convection as M increases above Mc 
for various values of the other parameters. 

3. Zero-capillary-number limit 
In  this paper we shall confine our analysis to the case where the capillary number C 

is zero. The capillary number is associated with deflection of the free surface, and 
under most circumstances is small. The limit C --f 0 corresponds to a flat surface 
(Davis & Homsy 1980)) a restriction which enables onset of convection to be analysed 
relatively simply. In  this limit ( 2 . 1 2 ~ )  reduces to 

G(7 + Qa/3dq2) - 2 H  = 0, (3.1) 

where the mean curvature H is given by 

(V, is the gradient in the horizontal plane). Equation (3.1) is thus a differential equation 
for the surface deflection q = y ( r ,  $, t ) ,  which is to be solved subject to the conditions 
(2.14) and (2.15). A solution is clearly 

representing an undeformed free surface. The fact that  there can be no other solution 
in the class of functions 7 with 17 I sufficiently small is easily established with the aid 
of the implicit-function theorem. We confine our attention to weakly nonlinear inter- 
actions that apply when M is close to Mc and when convective motions are of small 
amplitude. Thus surface deflections caused by motion remain small when C < 1. 

On the basis of this reasoning we infer that the upper free surface remains flat and 
undeformed. The equation of S is now x = 1 (0 < r < a), and the outward unit normal 
to it is n = 2. The lateral boundary S, is r = a (0 < z < 1). The problem to be solved 
in the limit C -+ 0 therefore comprises the equations (2.7)-(2.10) in the bulk of the 
liquid, together with boundary conditions as follows. On the lower boundary the 
conditions are (2.1 I), or equivalently, 

’I = 0, (3.3) 

e = u = ~ = ~ = o  ( Z = O ,  O G ~ < U ) .  (3.4) 

On the upper free surface ( 2 . 1 2 ~ )  reduces to 

( 3 . 5 a )  
ae 
-+LO = 0 (Z = 1, 0 < r < a ) ,  ax 

while (2.12 b )  becomes simply 

u ’ = o  ( z = 1 ,  O < r < a ) .  (3.5b) 
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I n  view of (3.3) the condition ( 2 . 1 2 ~ )  is redundant. We simplify ( 2 . 1 2 4  by noting that 

and that 
ae, i aeA 
ar '-;%+a 

nx(nxV0)  = -- 

Hence ( 2 . 1 2 4  can be decomposed into the two conditions 

au ae 
a2 ar - + - = O  ( x = l ,  O < r < a ) ,  

av iao -+-- = 0 (2 = 1 ,  0 < r <a). 
a2 ra+ 

The lateral boundary conditions (2.13) are 

aw 
(rv)  = - = 0 ( r  = a, 0 < z < 1) .  

a - u = -  ae _ -  
ar ar ar 

(3.5c) 

( 3 . 5 4  

I n  summary, therefore, we are required to  solve the nonlinear field equations 
(2.7)-(2.10) subject to the boundary conditions (3.4)-(3.6). With C = 0 the Bond 
number G no longer appears (Davis & Homsy 1980), so we have in place of (2.18) the 
dependence 

(3.7) Mc = Mc(R, Pr, L ,  a) 

for the critical Marangoni number. 

4. Linear stability problem 
The critical Marangoni number at which the conduction solution loses stability is 

determined from linearization of the system (2.7)-(2.10) together with the (linear) 
boundary conditions (3.4)-( 3.6). Although this linear problem is not self-adjoint, we 
assume the validity of the principle of exchange of stabilities, namely that the growth 
rate of the most dangerous disturbance changes from real and negative to  real and 
positive as M increases through its critical value. Vidal & Acrivos (1966) show for 
the linear problem on the infinite layer that this is true, and so we apply the same 
result to our case. 

When the principle of exchange of stabilities holds, the governing equations for the 
linear stability problem a t  criticality are 

V2v - Vp +- M-'Re2 = 0, (4.1) 

v . v  = 0, (4.2) 

V20+ MW = 0, (4.3) 

subject to the boundary conditions (3.4)-(3.6). We apply the operator curlcurl to 
(4.1) and then take the z-component of the resultant equation, obtaining 

V4w + M-IRVtB = 0, (4.4) 

where 0: is the planform Laplacian. Thus (4.3) and (4.4) constitute a pair of equations 



98 S. Rosenblat, 8. H .  Davis and G. M .  Homsy 

for the unknown functions w and 8. The appropriat,e boundary conditions are deter- 
mined by simplifying (3.4)-(3.6); they are found to  be 

(4.5) 
aW 

O = w = - = O  ( z = O ,  O , < r < a ) ,  
ax 

ae 22,w 
-+Lo = w = - -vp  = 0 (Z = 1, 0 6 r < a ) ,  
22 a22 

The system (4.3)) (4.4) reduces to  a pair of ordinary differential equations through 
separation of variables. It was in order to  effect this reduction that we introduced 
the artificial condition on the vorticity a t  the lateral boundary. We put 

w(r,#,z)  = cosm#J,(hr) Y ( z ) ,  

O(r ,  4 ,  x )  = cosm#J,(hr) X ( z ) ,  (4.8) 

where m = 0, 1,2, . . . is the azimuthal wavenumber, J, is the Bessel function of order m, 
and h > 0 is determined by the equation 

JL(ha) = 0. (4.9) 

The condition (4.9) ensures that the lateral boundary conditions (4.7) are both satisfied. 
The functions Y(z) ,  X ( z )  are solutions to the eigenvalue problem solved by Nield 
(1964); cf. appendix. The difference between Nield's problem and the one presently 
under consideration lies in the significance of the parameter A:  for the unbounded 
layer h is the wavenumber in the horizontal plane and can assume all real values, 
whereas for the finite cylinder h is restricted to the set of values defined by (4.9). 

It is convenient to write (4.9) in the form 

JL(smi) = 0, h,i = s,~/u, (4.10) 

where s,, denotes the i th positive zero of JL. Thus the integer i = 1 ,2 ,3 ,  . . . can be 
regarded as effectively a radial wavenumber, and the functional form of (3.7) is 

M = M ( R ,  L, a,  m, i).  (4.11) 

The critical Marangoni number for fixed R, L and a is then defined to be 

Mc = M,(R, L, a )  = minM(R, L, a, m, i).  (4.12) 

Figure 1 shows the variation of ill, with aspect ratio a for fixed values R = 0, L = 0, 
and for the six wavenumber pairs m = 0 , 1 , 2 , 3 , 4 ,  i = 1 and m = 1,  i = 2. These six 
were chosen because for moderate aspect ratios, 0 < a < 2.5 approximately, the 
critical Marangoni number occurs for one or other of them. We see from figure 1 
that  m = 1, i = 1 is the critical wavenumber pair for small aspect ratios, a < 1.15. 
On the interval 1.15 < a < 1.65 (approximately) the critical mode has m = 2 ,  i = 1 ,  
and with further increase in aspect ratio this is replaced by the axisymmetric mode 
m = 0, i = 1 on 1.65 < a < 1.9. Next, the modem = 3, i = 1 is criticalin 1.9 < a < 2.3, 
while for 2.3 < a < 2-5  the modes m = 4, i = 1 and m = 1 ,  i = 2 give nearly the same 
numerical value of the Marangoni number. 

m, i 
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FIGURE 1. Calculated stability curves, M versus a, for L = 0, R = 0, where rn and i are respec- 

tively the azimuthal and radial wavenumbers. &Ic is the envelope (minima) of the curves. 

The ordering of critical modes just described is retained for other values of R and 
L. I n  fact, this ordering is a direct consequence of the ordering of the numbers smi 
defined by (4.10), which is in turn a consequence of the side-wall boundary conditions; 
it is not surprising, therefore, that it should be invariant with respect to other physical 
parameters. 

Figure 2 illustrates the variation of critical Marangoni number M, with aspect ratio 
a for different values of Rayleigh number R, and a t  a fixed value L = 0. These curves 
show that Mc decreases as R increases for each value of a. Although not illustrat,ed, 
computations show that the same behaviwr (M,  decreasing with increasing R) occurs 
when L =l= 0. 

Figure 3 depicts the variation of M, with a for various values of surface Biot number 
L, and at the fixed value R = 0. We see that M, increases with L a t  each value of a. 
Computations show the same tendency a t  non-zero value of Rayleigh number. 

The general pattern of behaviour described here is consistent with that obtained by 
Nield ( 1964) for an unbounded layer. 

5. Eigenfunction expansions 
We propose to study the nonlinear stability problem by means of a modified Galerkin 

procedure. We represent the field quantities by series of functions of the spatial 
variables, with time-dependent coefficients. Following a suggestion of Eckhaus (1  965), 
we shall take as the basis functions the eigenfunctions of the linear stability problem. 
The time-dependent coefficients will then be effectively the amplitudes of the appro- 
priate convective modes, determined from nonlinear ordinary differential equations 
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R = 100 

~-20 t 
FIGURE 2. Calculated neutral stability curves M, versus a for L = 0 and various values of R.  

The m-values take the same sequence as in figure 1. 

“T 
L = 1-0 

140- 

130- 
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I I I I I * 
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a 

FIGURE 3. Calculated neutral stability curves M, versus a for R = 0 and various values of L. 
The m-values take the same sequence as in figure 1. 

to  which the governing partial differential equations reduce. The series are truncated 
in a rational way, according to criteria discussed by Rosenblat (1979). 

Galerkin methods require that the function basis of the expansion should constitute 
a complete set in an appropriate sense. I n  this regard i t  has been pointed out by 
Rosenblat, Homsy & Davis (1981) that the Marangoni number cannot be used as the 
eigenvalue parameter on which to construct a complete set of eigenfunctions of the 
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linear stability problem. This is because the expression (4.11) gives M as a single- 
valued function of R, other parameters being held fixed, and corresponding to this 
there will be only a single eigenfunction. On the other hand, if (4.11) is solved for R, 
the resulting expression has the form 

R = R ( M ,  L, a, m, i)) (5.1) 

and is not single-valued; in fact there is a countably infinite number of solutions of 
the form (5.1) to the equation (4.11). I n  other words, there are infinitely many values 
of R for each value of M ,  and correspondingly infinitely many eigenfunctions. 

Although the critical Marangoni number is given correctly by the results of $4, 
the implication of the foregoing paragraph is that the Rayleigh number is the ‘true ’ 
eigenvalue parameter of the linear stability problem. We need to  take this into 
account in setting up the Galerkin procedure, even though much of the subsequent 
analysis will become redundant through truncation and approximation. 

Let i@ be a fixed value of the Marangoni number, and consider the linear eigenvalue 
problem 

v2v - vp + iiX-lR82 = 0, (5.2) 

v . v  = 0) (5.3) 

v2e+iiXw = 0, (5.4) 

with boundary conditions (3.4)-(3.6), and with the Rayleigh number R regarded as 
the eigenvalue parameter. Non-trivial solutions of this boundary-value problem 
exist for certain values of R, denoted Rmij, where m is the azimuthal wavenumber, i 
is the radial wavenumber, and j = 1) 2,3, ... is the particular value implied by (5.1). 

Thus A 

Rmij = R,(M, L, a, m, i), (5 .5 )  

and we assume the ordering Rmi, c Rnli2 < ... for other parameters fixed. Graphs of 
the functions (5.5) can be found in the paper by Rosenblat et al. (1981). The int.egerj 
is in effect a vertical wavenumber. 

Corresponding to each eigenvalue Rmij there is an eigenvector (vmij, O m i j )  of the 
linear boundary-value problem. The forms of wmij and Smij are given by (4.8)) while 
the other two velocity components can be calculated from (5.2) and (5.3). The com- 
ponents, which are required in the subsequent computations, are found to  be 

(5.6) 1 
umii = ( l/hmi) cos m$ J;(hmir) DYmij(z), 
vmii = ( -m/h~ir)sinm$Jm(h,,r) DYm&), 

wmij = cos m#Jm(hmir) Ymii(z), 

Omii = cos m$Jm(hm,r) Xmii(x), 

where X m i j ,  Ymij_are the eigensolutions of the eigenvalue problem of Nield with 
R = Rmii, M = M and h = hmi. 

I n  the modified Galerkin-Eckhaus method to be used below we require also the 
adjoint eigenfunctions. The system adjoint to (5.2)-(5.4) is easily shown to be 

V ~ ~ * - V ~ * + & ~ * ~  = 0, (5.7) 

v.v* = 0, (5 .8 )  

(5.91 v2e* + J ? - ~ R ~ *  = 0, 
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8" = u* = V* = W* = 0 ( x  = 0,  0 < r < a ) ,  (5.10) 

- 0  ( z = 1 ,  O < r < a ) ,  (5.11) ae* aw* au* av* -++p+- = w* = _. - 
82 ax ax ax 

- 0  ( r = a ,  O < x < l ) .  
aw* ae* 

(yv*) = - = - - a u* = - 
ar ar ar 

(5.12) 

These forms are consistent with those of Davis (1969) and Davis & Homsy (1980). 
The adjoint problem (5.7)-(5.12) is also separable, and the eigenvalues Rmi, are 

the same and have the representation (5.5). The adjoint eigenvectors are denoted 
(v&,, BZi,) ; a relatively simple calculation gives the following explicit representations : 

u:lij = hm4 cosmq5 J&(hm4r) DY$&), 

vgij = - (m/r)sinmq5J,(hmir)DY$i,(x), 
Wmij  * = cosrnq5Jm(hmir) Y&,(Z), 

8&, = cos mq5 Jm(hmir) Xgi j (x ) ,  

(5.13) 

where X z i j ,  Yz, ,  are solutions of the eigenvalue problem, which is adjoint to  that 
solved by Nield (1964) ; cf. appendix. 

Our purpose is to study the nonlinear evolution of disturbances as the Marangoni 
number increases through its critical value, and at  aJixed Rayleigh number. To simplify 
the discussion we take henceforth R = 0, so that pure Marangoni convection will be 
examined. As a further simplification, and again without essential loss of generality, 
we take the surface Biot number L = 0. The nonlinear system (2.7)-(2.10) can now 
be written conveniently in the form 

V2v-Vp = MPr- l  - + ( v . V ) v  , (5.14) 

(5.15) 

(5.16) 

[$ I 
v . v  = 0, 

and the boundary conditions are (3.4)-(3.6)) with L = 0. 
We shall solve this problem for values of M close to critical by expanding the field 

quantities in series of the eigenvectors (vmi,, Bmii)  with time-dependent coefficients. 
First, however, we let (vgij, S&,) denote an eigensolution of the adjoint problem in 
the case that i@ = Mc, the critical value at  a fixed aspect ratio for R = L = 0. The 
corresponding eigenvalue is Rmii. Because of the ordering of Rayleigh numbers 
stipulated immediately following (5.5), this means that Rmil = 0 for some m and 
some i. Let (v, 8) be a vector with V .  v = 0, satisfying the boundary conditions (3.4)- 
( 3.6), and consider the expression 

Q (vgij. ( V ~ V  - vp) + e;i,(vw + M W ) ) ,  (5.17) 

M arbitrary, where ( ) denotes integration over the volume 0 6 r < a, 0 6 q5 < Zn, 
0 < x < 1 occupied by the fluid. Integrating by parts, and noting again that (v&, S z f i )  
solves the adjoint linear problem with l@ = M, and R = RmS,) we easily find that 

Q = ( M  - M,) <o;ij w> - M L ~  ~ ~ ~ ~ ~ < ~ ! ~ g ~ ~  e). (5.18) 
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Observe that Q = 0 when M = Mc and Rmij = 0, which is consistent with the defini- 
tion of the linear stability problem and its adjoint a t  criticality. 

Next, let (v, 0) denote a solution of the nonlinear system (5.14)-(5.16) with boundary 
conditions (3.4)-(3.6), for some given value of M .  Take the scalar product of (5.14) 
with vZij, the product of (5.16) with 6z,ij, add, and integrate over the fluid volume. 
Using (5.18) we then obtain the equation 

( M  - Mc) ( 1 9 ; ~ ~  W )  - M,l Rmij(w& 0) = M 

+ M(8zij(v. V) 0 + Pr-lvzij. (V . V) v). (5.19) 

Now choose a finite set Y of eigensolutions (vmij, Om,,) of the linear stability problem. 

9 = {mij}, (5.20) 

which means that an element of the set has azimuthal wavenumber m, radial wave- 
number i and vertical wavenumberj. We can thus refer to mij = p, say, as the vector 
wavenumber of an element of Y.  

We assume that the solution vector (v, 0) can be represented, to a good approxima- 
tion, by a linear combination of elements of the set 9, with time-dependent coefficients. 
Thus we set 

(v, 0) = C A m i j ( t )  (vmij, e m i j ) ;  (5.21) 

substitution of (5.21) into (5.19) reduces the latter to a system of N ordinary non- 
linear differential equations for the amplitude functions A,, j. 

The details of this reduction are considerably simplified on account of the following 
orthogonality relations. First of all we have the bi-orthogonality condition 

(w;eq) = 0 when p $. q (5.22) 

for any two fields with vector wavenumbersp, q. Next, since the azimuthal dependence 
has a trigonometrical form, we deduce from the orthogonality properties of trigono- 
metrical functions that 

Let N 1 be the number of elements in 9, and for convenience write 

9 

(0& w,,~,) = (v;lii. vnkl) = (Bgij Onkl) = 0 when m =I= n, (5.23) 

for any values of i, j ,  k, 1. Similarly, since the radial dependence has a Bessel-function 
form, we have 

(Om,, * wnkl) = (v&. vnkl) = (8zi j  Onkl) = 0 when i + k, (5.24) 

for any values of m, j ,  n, 1. 
There remains the question of the choice of the set 9. For ease of computation i t  

is desirable that Y should comprise as few elements as reasonably possible. Since we 
are concerned with the weakly nonlinear interactions that cause the onset of convec- 
tion, we must certainly include in Y the critical mode (or modes); as pointed out in 
9 4 the nature of the critical mode depends on the aspect ratio. Finally, Y must include 
a minimal number of other modes needed to generate nonlinear evolution into con- 
vection of the critical mode. By ' minimal ' we mean the non-critical modes with the 
smallest damping rates. As can be seen from (5.19)) when M is close to Mc the damping 
rate of a non-critical mode is determined approximately by the magnitude of R,,,, 
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so that we retain only those modes with the smallest values of Rmii and neglect all 
others. A discussion of the procedure and its validity can be found in Rosenblat (1 979). 

6. Evolution at simple points 
We study in this section weakly nonlinear evolution into convection a t  three specific 

values of the aspect ratio, namely a = 0.90, a = 1.50 and a = 1.80. As can be seen 
from figure 1, the loss of stability of the basic conduction state a t  each of these values 
is simple in the sense that only one mode loses stability as the Marangoni number 
increases through its critical value. I n  each case we reduce the problem to a single 
ordinary nonlinear differential equation of Landau type, and examine its solutions 
and their stability. 

Figure 1 shows that the critical mode a t  this aspect ratio is the mode (m, i,j) = (1,1,1). 
We find that 

and, by hypothesis, Rlll = 0. Now the quadratic self-interaction of the mode 11 1 
generates the modes Oij, 2 i j  with i , j  = 1,2, . . . . Computations show, however, that  

6.1. The case a = 0.90 

Mc = 79.5, (6.1) 

Roll = min R,,,, R,,, = min RZii, (6.2) 
i ,  J’ i, i 

and, moreover, that  the higher eigenvalues are widely separated from these. For this 
reason we take the set 9’ to comprise three modes, 

Y = {111,011,211}, (6.3) 

(6.4) 

and substitute into (5.14) the expansion 

(v, 6 )  = A,11(v111, &ll) +Aoll(voll, 8011) - I - ~ 2 1 1 ( V Z l l ,  8211) ,  

where the Aii, are functions of time. 

we obtain the following set of equations: 
Using the orthogonality relations (5.22)-(5.26) to eliminate several of the terms, 

vlllAlll  = ( M - M , )  A l l ~ - - ~ , I l ~  (6.5) 

%ll A011 = ( M  - Mc - J!f%l*l f 0 1 J  A011 - ZOll, (6.6) 

~ZllAZll = ~ ~ - ~ c - ~ ~ l ~ z l l f z l l ~ ~ z l ~ - ~ z l l ~  (6.7) 

where the dot denotes differentiation with respect to t .  Here 

and the Z i j k  are homogeneous quadratic functions of Alll, A,,, and A,,,. The general 
form of the Ziik is given by 

ATvT), (6.10) (of wP) 2, = M(O;( 2 A,v,. V) C A, 8, -I- Pr-l vf . (x A, vq . V) 
Y Y Y Y 

where p ,  q, T refer to vector wavenumbers. 
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Each of the two terms on the right of (6.10) contains N 2  integrals when Y has N 
elements. However, several of these integrals are identically zero by virtue of the 
orthogonality relations (5.22)-(5.24). In the present case we find that, for the mode 
111, only 4 of the 9 integrals are non-zero, and we obtain for the associated quadratic 
nonlinearity an expression of the form 

(6.11) 

(6.12) 

a m  = (@L(v111. Vom11+ v m l l  *Vol11) + Pr-lv?ll* ( ~ 1 1 1  *Vvm11+ vmll .Vv111)), (6.13) 

for m = 0 and 2. Using similar considerations, we obtain 

dOllZ011 = M("OlA!ll+ "ooA&1 + "ozA,211), (6.14) 

~ 2 1 1 ~ 2 1 1  = M(%lA!ll+ " 2 0 2 ~ 0 1 1 ~ 2 1 1 ) ,  (6.15) 

anlk = ( 8 ~ 1 1 ~ k l l . V ~ k l l + P r - ~ v ~ z l , .  ( v k l l * V ) v d  (6.16) 
where 

form = 0, E = 0, 1 ,2  and m = 2, E = 1, and 

"202 = ~ ~ ~ 1 1 ~ ~ 0 1 1 .  V&l+ VZll. V~Oll) + F9-l V&l.  (VOll. V V , l l +  V z n .  VVOll)). (6.17) 

Equations (6.5)-(6.7) are the evolution equations for the mode 111 at the aspect 
ratio a = 0.9. Thenull solution, A,,, = Aoll = A,,, = 0, corresponds to the conduction 
state, and a t  fixed Rayleigh number, R = R,,, = 0, is stable for M < Mc and unstable 
for M > M,. 

To study bifurcation from the critical point and the evolution of convection in the 
neighbourhood of M = M,, we can simplify the system (6.5)-(6.7) in the following 
way. The modes A,,, and A,,, are relatively strongly damped a t  M = M,, and are 
present only because of the quadratic self-interaction of the critical mode A,,,. Hence 
we can neglect the time-derivative terms in (6.6) and (6.7), and replace M by Mc in 
these equations. Moreover, when M is close to Mc the magnitudes of A,,, and A,,, 
are small compared with Alll;  hence in the right-hand sides of (6.14) and (6.15) we 
can neglect the quadratic terms involving A,,, and A211 by comparison with the terms 
involving A:ll. Taking these approximations together, and substituting (6.14) and 
(6.15) into (6.6) and (6.7) respectively, we obtain 

(6.18) 

We now substitute (6.18) into (6.1 l), and then substitute the latter, with M replaced 
by M,, into (6.5).  This gives the single equation 

(6.19) 

(6.20) 

Equation (6.19) is the Landau equation for the evolution of the critical mode 111 .  
are determined by numerical integration of the appropriate The coefficients vIl1, 
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Pr vlll x 10-4 ull1 x 10-3 

0.1 0.37 1.2 
1.0 0.13 0.16 

10.0 0.10 0.11 
00 0.10 0.10 

TABLE 1 

products of eigenfunctions. The computations have been performed a t  various values 
of Prandtl number and some results are shown in table 1. We infer from the calcula- 
tions that 

V l l l  > 0, Will > 0, (6.21) 
for all Prandtl numbers. 

From (6.19) and (6.21) we infer that  a solution bifurcates from the critical value M, 
having the representation 

4 1 1  = 5 [ (M - ~ ) / ~ 1 1 1 1 ~ .  (6.22) 

The solution exists only for M > M, (supercritically), and is known from elementary 
bifurcation theory to be stable. Because of the representation (6.4), we conclude that 
a t  aspect ratio a = 0.9 the onset of convection is supercritical and, for small M - M,, 
has to leading order the form of a non-axisymmetric mode with azimuthal wave- 
number 1. 

From figure 1 we see that a t  this aspect ratio the critical mode is (m, i,j) = (2 ,1 ,1) .  
The critical Marangoni number is 

M, = 79.5, (6.23) 

with RZl1 = 0. The quadratic interaction of the mode 211 with itself generates the 
modes O i j ,  42j, with i, j = 1,2 ,3 ,  . . . , but because of the ordering of the associated eigen- 
values we neglect all except the modes 011 and 411. Thus 

9 = (211,011,411). (6.24) 

Since the indexj indicating the vertical mode is always unity, we simplify the notation 
by dropping the last subscript. Thus 

6.2. The case a = 1.50 

(v, ') = A Z l ( v Z l ,  '21) + A O l ( v O l ,  '01) +A41(v41, O41)* (6.25) 

We substitute (6.25) into (5.19) to obtain a system of three ordinary differential 
equations for the amplitudes, namely 

~ Z l & ,  = ( M  - Mc) 4 1  - 2 2 1 ,  (6.26) 

~ O l A O l  = ~ ~ - ~ , - ~ ~ l ~ o l f o , ~ ~ o l - ~ o l ~  (6.27) 

V41A41 = ( M - M , - M , ' R 4 , ! f 4 , ) A 4 1 - 2 4 1 ,  (6.28) 

where the coefficients have the forms (6.8)-(6.10). Proceeding as in the previous case, 
we find that 

dZlZZ1 = ~ ~ 2 1 ( P O A O l + P 4 A 4 1 ) ~  (6.29) 
where 

p,, = (B$(vZl. Vom1 + vml. VOZ1) + pr-' ~ $ 1 .  ( ~ 2 1 .  VV,,, + v m l .  VV21)) (6.30) 
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Pr vZ1 x 10-4 w%l x 10-2 

0.1 0.37 6.2 
1.0 0-13 0.98 

10.0 0.10 0.50 
co 0.10 0.45 

TABLE 2 

for m = 0 and 4; also 

dOIZOl = M(P02Ai l  +POOAil +P04A,21)' (6.31) 

d41 '41 = M(P42 P404 (6.32) 

(6.33) 
where 

fo rm = 0, k = 0,2,4 and m = 4, k = 2, and 

Pmk = ( G l l V k l .  04, + Pr-l v;1* (Vkl .  V) Vkl), 

,8404 = (O~l(vol. Vd4, + ~ 4 1 .  VSol) + Pr-l vZ. (vO1. vv41 + ~ 4 1 .  Vv,,)). (6.34) 

Using the same reasoning as before, we can solve (6.27) and (6.28) approximately 
to  find AO1, and A,,, in terms of A&l. We obtain 

(6.35) 

Substituting (6.35) and (6.29) into (6.26)' we find that the latter reduces to the simple 
Landau equation 

~ 2 1 A 2 1  = ( M  - Mc) A 2 1  - w 2 1 4 1 ,  (6.36) 
where 

(6.37) 

Computed values of the coefficients vZ1, wZ1 for various Prandtl numbers are given 
in table 2, from which it can be seen that both coefficients are always positive. We 
infer that  

A 2 1  = 5 [(M-M)/wz,P (6.38) 

represents a stable supercritical conduction solution for M - Mc small, and corres- 
ponds to a non-axisymmetric mode with azimuthal wavenumber 2. 

6.3. The case a = 1.80 

Figure 1 shows that the critical mode at this aspect ratio is the axisymmetric mode 
(m, i,j) = (0,1,1). We find that 

M, = 79.7, (6.39) 

with Roll = 0. The quadratic self-interaction of this mode generates all the modes 
Oij with i,j = 1,2, . . . ?  but by virtue of the ordering of the eigenvalues ROij we retain 
only the mode 021. Thus 

Y = (011, OZl}, (6.40) 

and we substitute the expansion (withj  = 1 assumed) 

(v, 4 = AlJ,(v,,, eel) + Aoz(v023 &2) (6.41) 
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Pr vol x 1 0 - 4  yo x 10-2 wO1 x 1 0 - 3  

0.1 0.36 0.32 1.8 
1.0 0.12 -0.19 0.23 
10.0 0.10 - 0.24 0.15 
a3 0.098 - 0.25 0.14 

TABLE 3 

into (6.19) to obtain a pair of amplitude equations: 

v o J 0 1  = ( M  - Mc) A01 - 2 0 1 ,  (6.42) 

(6.43) vo2 A 0 2  = ( M  - M, - RO, $02) A 02 - 2 0 2 .  

Using the formula (6. lo), we find that 

dOlZ01 = ~ ~ Y l l ~ , 2 1 + Y 1 1 2 ~ 0 1 ~ 0 2 + Y 1 2 ~ ~ 2 ~ ~  (6.44) 

d02Z02 = M(YZlA& +Y212AOlAO2+Y22A2,2), (6.45) 

yik = (O&(vok. V )  OOk + Pr-1 v:~. (vok. V) vOk) (6.46) 

yilz = (O~~(vol.VOo2+vo2.VOol)+Pr-1v~~. (vo1.V~02+vo2.VvoI)).  (6.47) 

We approximate as before for M close to M,, and on the assumption that the 
magnitude of A,, is much smaller than that of Aol. We then solve (6.43) and (6.45) to 
obtain 

where 

for i, k = 1,2,  and 

(6.48) 

We substitute this and (6.44) into (6.42), with M replaced by illc in the nonlinear 
terms and with the terms containing Ai2 omitted on the grounds that it is smaller 
than those retained. This leads to  a single equation for the critical-mode amplitude, 
namely 

v01Ao1 = ~ ~ - ~ c ~ ~ 0 1 - Y 0 ~ ~ 1 - ~ 0 1 ~ , 3 , ~  (6.49) 
where 

Yo = Mcy11/do1, (6.50) 

(6.51) 

Computed values of the coefficients are given in table 3. 
Observe that vol,wol are both positive, but that  yo is positive for low Prandtl 

numbers and negative for moderate and large Prandtl numbers. 
One solution of (6.49) is A,, = 0, which corresponds to the conduction state. This 

solution is stable for M < Mc and unstable for 1M > M,. Other solutions are deter- 
mined from roots of the equation 

WolA2,1+yOA01-(M-Mc) = 0. (6.52) 

All the solutions are illustrated in figure 4 (a) for the case yo 1 0, and in figure 4 (b)  for 
the case yo < 0. A convection solution exists for both M < $1, and M > iw, (trans- 
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o ! / R  . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . a  

:* 1 
P :  ,, ....) M 

' ( b )  

FIGURE 4. The bifurcation diagrams for a = 1.80, corresponding to a pure axisymmetric mode 
rn = 0. Solid lines represent stable branches while dotted lines represent unstable branches. 
(a)  The case of Pr = 0.1; the branch PQ represents downflow in the centre. (b )  The case of 
Pr 2 1 ; the branch P Q  represents upflow in the centre. 

critical bifurcation), but the subcritical branch turns around at  a value M, of M and 
continues into the half-plane M > Mc. 

We determine the stability of the solutions in the following way. Let 2 denote any 
time-independent solution of (6.49). We set 

A,, = B+a, (6.53) 

in equation (6.49) and linearize, to obtain the stability equation 

vo16, = ( M  - Mc - 2y, B - 3w,, B2) a, (6.54) 

A simple calculation shows that the subcritical branch OP in figure 4 is unstable, 
and that the branches OR, PQ are stable. This is the standard result for transcritical 
bifurcation. 

These calculations settle in principle the question of the direction of thejlow at the 
centre of the container because the asymmetry of the bifurcation diagram implies a 
preferred branch. As M increases towards M,, a disturbance, however small, to the 
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conduction solution will result in loss of stability of the latter before M reaches the 
critical value ill,-, and a consequent snap-through to  the branch PQ. As M increases 
still further the system stays on the branch PQ, which is thus ‘preferred’ to the 
branch OR. Of course, when M > Mc one could find a disturbance of large-enough 
size that would cause the system to jump from this branch to the other. The fact 
that both supercritical branches are stable is similar to the result of Liang, Vidal I% 
Acrivos ( 1969) for axisymmetric buoyancy-driven convection in a cylinder. 

From (6.6) we see that the vertical velocity component a t  the centre of the con- 
tainer for the mode 01 is 

wo1 = A,lYol(x). (6.55) 

Numerical calculations show that Y,,(x) > 0 on 0 < x < 1;  here the sign of A,, deter- 
mines the direction of the flow, giving upflow when A,, > 0 and downflow when 
A,, < 0. The preferred branch PQ has A,, < 0 for very small Prandtl numbers and 
A,, > 0 for moderate and large Prandtl numbers. We infer that there will be doivnflow 
at t,he eeritre when Pr < 1, and upffow when Pr > 1 .  

7. Evolution at double points 
It is evident from figures 1-3 that  there are certain values of the aspect ratio a t  

which two modes lose stability simultaneously. I n  this section we shall investigate 
the onset of convection in the neighbourhoods of such double points and the secondary 
bifurcations that can occur. 

7.1. Intersection of modes 11,21 

At the point marked A in figure 1 the curves of M as a function of aspect ratio for the 
modes 11 and 21 intersect. The value of a a t  which this intersection takes place is 
denoted by aA ( CI: 1.20). The common value of MI,, M,, a t  this point will be denoted 
by M,; computations give 

Mc = M,, = M,, = 85.2. 

By hypothesis we have that R,, = R,, = 0. 
We are interested in studying the onset of convection a t  values of a slightly less 

and slightly greater than a,. As noted in $6, the self-interaction of the mode 1 1  
generates modes with azimuthal wavenumbers 0 and 2, while the self-interaction of 
the mode 21 generates modes with m = 0 and m = 4. I n  addition, the interaction of 
modes 1 1  and 21 generates a mode with m = 3. For reasons indicated earlier, we 
approximate by retaining only the leading (in the sense of eigenvalue ordering) 
member of each of these generated sets. This leads us to select a 5-element set of 
expansion functions, namely 

9 = (11,21,01,31,41}.  (7.2) 

Substituting the appropriate eigenfunction expansion into (5.19)) we obtain a 
system of five ordinary differential equations for the amplitudes. These equations 
are conveniently written as follows: 
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Note that in (7 .3 )  we have retained M,, in place of M,;  the reason for this will soon 
become apparent. 

We reduce the system ( 7 . 3 ) ,  (7 .4 )  as in $ 6 .  We use (6 .10)  to calculate the quadrat’ic 
nonlinearities in ( 7 . 4 ) ,  and find 

‘01’01 = M ( a O I A ? l + a O Z A g l  + a O O A & +  a 0 3 A ~ 1 + a 0 4 A i 1 ) )  ( 7 . 5 a )  

’31 ’31 = AllA 21, (7 .5b )  

’41’41 = M ( a 4 2 A h  f p 4 0 4 A 0 1 A 4 1  + a413A11A31), (7 .5c )  

where the a,, are given by (6 .16) ,  /3404 is given by (6 .34 ) ,  and where 

a m j k  = {ozl(vj]. v8,1+ vkl. V8.jl) + Pr-’ Vg1. (v.j1. vv,] + vkl. vvjl)). (7 .6 )  

We now solve (7 .4 )  approximately by neglecting the time-derivative terms, replacing 
M by M,, and neglecting as relatively small the quadratic terms involving A,,, A,, 
and A,, on the right-hand sides of ( 7 . 5 ~ - c ) .  This process gives the approximations 

These formulae can be compared with (6 .18)  and (6 .35 ) ,  i t  being noted in particular 
that ao2 = poz and a 4 2  = p42. 

The quadratic nonlinearities in (7 .3 )  are found to be given by 

dllZll = MAll(aOAOl+a2A21) +Ma123A21A31, (7 .8 )  

‘21 ’21 = M(a21 A?l + P O A  21A 01 + p 4  A 21A41 + &213 A 11 ’31) , ( 7 . 9 )  

where ao,a2 are defined by (6 .13) ,  aZ1 by (6 .16 ) ,  p o , p 4  by (6 .30 ) ,  and ~ 2 1 3 ,  a 1 2 3  by (7 .6 ) .  
We now substitute (7 .7) - (7 .9)  into ( 7 . 3 )  to obtain the following pair of equations: 

v11 A,, = ( M  - MI,) A,, - C l  A,, A,, - w 1 4 1 -  ~1 A l l  A;,, 

v21 A 21 = (H - H21) ~ 4 2 1  - c2 A?1- ‘ 7 2 A ? i A 2 1 -  wzAg1, 

(7 .10 )  

(7 .11)  

where the coefficients are defined by the following formulae: 

c1 = Mca2/’11, c2 = MCa21/’21~ 

(7 .12)  

and where wZ1 is defined by (6 .37 ) .  Computed values of the coefficients are given in . 
table 4 .  

We propose to  study the nature and stability of solutions of (7 .10) ,  (7 .11)  in the 
neighbourhood of the double point A ,  and for values of M reasonably close to M,. 
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Pr Vl1 x 10-4 c1 x 10-2 w1 x 10-2 c1 x 10-3 vz1 x 10-3 c2 x 10-2 U~ x 10-3 o2 x 10-2 

0.1 0.49 - 1.2 14.0 2.0 3.7 1.3 1.6 4.2 
1.0 0.19 - 0.74 1.5 0.27 1.2 0.36 0.28 0.62 

10.0 0.16 - 0.69 0.93 0.18 0.91 0.26 0.20 0.31 
00 0.16 - 0.69 0.88 0.17 0.89 0.25 0.19 0.28 

TABLE 4 

We consider first the case of aspect ratios slightly less than a,, a < a,. We then have 

Mll < MZl, (7.13) 

7 = M - MI,, A = M,,- MI,. (7.14) 

that  

and we define 

Equations (7.10), (7.11) can now be written in the form 

(7.15) 1 V, A,  = y A  , - clA,A, - #,A: - r ~ ,  A ,  A:, 

v,A, = (7 -A)  A,  - c,A; - CT,A;A, - uzA,3, 

where for the sake of brevity the notation has been simplified in an obvious way. 
Because of the approximations used in their derivation, the equations (7.15) can 

be regarded as valid only for small values of A and small values of 7. A reasonable 
measure of smallness is the ratio of these quantities to the critical value of M ,  which 
is about 85. In the computations to be described ,presently we have taken values of A 
in the range 0 < A < 5.0 and values of 7 in the range 0 6 7 < 2A. Results for signifi- 
cantly larger values are not easily substantiated on the basis of our approximation 
scheme. 

Before proceeding further we formulate the stability problem associated with the 
system (7.15). Let (A,, 2,) denote a solution of (7.15) and set 

A ,  = A,+u,, A ,  = A,+u,. (7.16) 

Linearization of the equations with respect to the disturbances leads to the linear 
system 

(7.17) 1 v16, = (~-c,A,-3w,A;-a1A~)a1- (c ,+  2a,A,)A,a,, 
v,U, = - ~ ( C , + ~ , A , ) A , U , + ( ~ - A - ~ , A ~ - ~ ~ , B ~ ) U , .  

The exponents of this system determine the stability of the solution (Al, A,). 
We examine now the solutions of (7.15) and their stability. Observe first that (7.15) 

has the trivial solution A ,  = A ,  = 0, which corresponds to the conduction state, and 
which is stable for 7 < 0 and unstable for y > 0. Moreover, for this solution one sta- 
bility exponent changes sign at 7 = 0 and the other a t  7 = A, so that each of these 
values locates a bifurcation point for the appearance of a new (convection) solution. 

The trivial solution is unique for 7 < 0. As 7 increases through zero, a pair of non- 
trivial solutions emerges, determined by the pair of equations 

(7.18) 
w , A ~ + ~ z A ~ A 2 + ~ , A ~ - ( ~ - A ) A A 2  = 0. 

If A were large, these equations would reduce to A,  = 0 and A ,  (equivalent to A,,,) 

1 A; = (7 -%A, - a,A;)/o,, 
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FIGURE 5 .  The bifurcation diagrams for a slightly less than U A  2: 1.20, where A = M21 - &Ill. 
Solid lines represent stable branches while dotted lines represent unstable branches. 

given by (6.22), and would correspond to a ‘pure’ convection state with azimuthal 
wavenumber rn = I a t  leading order. When h is small, however, the mode rn = 2 
has an effect, as expressed by the coupled equations (7.18), in two ways: the solution 
has A,  $. 0 and the parabolas (6.22) are distorted as 7 approaches A ,  

Numerical calculations show that solutions of (7.18) exist only on an interval 
0 < 7 < rT, where rT > A. The value of vT depends on Prandtl number, but com- 
putations reveal that 1 < ?irF/A < 1.2 for the entire Prandtl-number range. On 
0 < 7 < rT there is precisely one root 2, of the cubic in (7.18), and a corresponding 
pair of roots + A,, - 2,. These solutions are illustrated in figure 5 : one pair of solutions 
is represented by the curves 0, UT,, 02T2 and the other by the curves O,LTl, 0,T2. 

Calculations utilizing (7.17) show that these solutions are stable. 
The remaining solutions of (7.15) are given by 

A ,  0, 7 - A  = waA2. -2 (7.19) 

These exist for y > A and are the ‘pure’ m = 2 mode solutions considered in $6.2. 
Their stability is determined by substituting (7.19) into (7.17), which gives 

vlG1 = ( ~ - C ~ A ~ - ~ , A ~ ) ~ , ,  vacia = --2(7-A)u2. (7.20) 
- - 
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FIGURE 6. The bifurcation diagrams for a slightly greater than aA _N 1.20, where A = MI,  - Mzl. 
Solid lines represent stable branches while dotted lines represent unstable branches. The curly 
lines represent time-periodic bifurcations. The orientations of these branches and their stability 
properties are unknown. 

Evidently it is the first of these equations that decides stability. Calculations show 
that the branch corresponding to positive A,, the upper branch AR in figure 5 ,  is 
unstable, while the lower branch, AS, is unstable initially but regains stability a t  
precisely the value 7 = qT defined above. 

The situation depicted in figure 5 has been established numerically. In  summary, 
the behaviour of the system is as follows. For 7 < 0 ( M  < Mil) the conduction solution 
is stable, and is replaced on 0 < 7 < qT (&Ill < M < HT, say) by a pair of mixed-mode 
solutions given by (7 .18) .  For q > yT, however, these give way to a single solution 
which a t  leading order is a pure convective state with m = 2.  This behaviour is quali- 
tatively independent of Prandtl number. 

For aspect ratios slightly gTeater than a,, a > a,, we have 

M 2 1  < Mil. 
We then set 

7 = M - Mzl, A = Ml, - M,, 

(7.21) 

(7.22) 
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to  obtain the system 

VIA, = ( ~ - A ) A , - c , A , A , - G J , A ~ - ~  A A' 
(7.23) 

The stability equations for a solution (B,,A,) of this system are similar to (7.17)) 
except that the terms 7 and 7 - A  are interchanged. 

The results of numerical calculations for (7.23), illustrated in figure 6, are as follows. 
The conduction solution A ,  = A, = 0 exists for all 7, and is stable for 7 < 0 and 
unstable for 7 > 0. The solutions defined by 

A ,  = 0, A; = A: = T / W ,  (7.24) 

exist for 7 > 0. The lower branch 0,X is always stable, while the upper branch is 
stable for 0 < 7 < qT, where qT E (0, A ) ,  and has a value dependent on Prandtl number. 
The solutions determined by 

u,A, = ~ A , - c , A ~ - ~ , A ~ A , - G J , A , ~ .  ,)I 

(7.25) 

exist on the interval qT < 7 < A. There are two such solutions, comprising a single 
root A ,  and corresponding +A, .  These solutions are found to be stable for 7 < qs. 
They become unstable a t  7 = 7s to time-periodic disturbances, so that the curly line 
in figure 6 denotes a Hopf bifurcation. 

We see from figure 6 that  the conduction solution is replaced by the pair of solutions 
(7.24) on 0 < 7 c qT. Next, there is a region, qT < 7 < qe, in which there are three 
stable solutions: the lower branch of (7.24) and the mixed-mode solutions of (7.25). 
When qs < 7 < A,  the pure mode 0,S is stable. We have not tested the stability of the 
time-periodic Hopf solutions. However, for 7 > A there is only one (stable) steady 
solution, which is a pure non-axisymmetric mode with m = 2. These results apply a t  
all Prandtl numbers. 

We see from figures 5 and 6, and from the preceding discussions, that  on either side 
of the aspect ratio aA the system may eventually attain the same state: a pure 
convection solution with m = 2, so that one way or another the mode with m = 1 is 
suppressed by the interaction when A is small. This interaction can therefore be 
regarded as being a mechanism for wavenumber selection in the sense just described. 
Of course, for a > a,, there may be a time-periodic mode that ultimately survives. 

7.2. Intersection of modes 21,Ol 

The point B in figure 1 is the intersection of the curves for the modes 21 and 01. We 
denote the corresponding value of a by aB ( N 1.70). The common value of M,,, M,, at 
this point will be denoted by Mc; computations give 

Mc = M,, = M,, = 80.6. (7.26) 

By hypothesis we have that R,, = R,, = 0. Using the same reasoning as in the previous 
case, we take 

9 = (21,01,41,02)  (7.27) 

as the set of eigenfunctions for the evolution of the modes 21 and 01 near the double 
point. 
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Substituting the associated eigenfunction expansion into (5.19), we obtain, by 

(7.28) 

analogy with (7.3) and (7.4),  the following ordinary differential equations: 

V,J,, = ( M  - J1;,1) A,, - z,, 
vVliAmi = ( M  - M, - Mzl R,i f,i) A,i - Z,i 

(mz = 2,OL 

(m = 4, i = 1 and m = 0, i = 2). (7.29) 

For the quadratic nonlinearities in (7.29) we use (6.10) to find that 

d41Z41 = M(P42A& + P404A01 + B404A02A41)) (7.30) 

whereP,,isgiven by (6.33),PdO4 by (6.34) andP404by (6.34) withthe mode 011 replaced 
by the mode 021. Here 

d02Z02 = M ( s 2 2 A ~ l + y 2 1 A ~ l  + Y Z 1 2 A O l A 2 1 + ~ 2 2 A ~ 2 +  s24A&), (7.31) 

where the y are given by (G.46)) (6.47), and we define 

f%C, = (4%V,l* V) em, + Pr-l V$k. (V,l' V) v,,) (7.32) 

for k = 1 , 2  and m = 2 , 4 .  We now solve (7.29)) making the same approximations as 
before, to obtain 

The quadratic nonlinearities in (7.27) are found to be given by 

d21Z21 = MA21(pOAOl f P O A 0 2 + P 4 A 4 1 ) )  (7.34) 

d O l Z 0 1  = M(Yll&l + Y 1 1 2 ~ 0 1 ~ 0 2 + ~ 1 2 ~ ~ 2 + ~ 1 ~ ~ ~ 1 + ~ 1 4 ~ ~ 1 ) ~  (7.35) 

%lA 21 = ( M  - JGI) -42, - c z 4 1  A 0 1  - ~ 2 A 2 1 A &  - WZA,31, 

%l A 0 1  = ( M  - J f O J  A 0 1  - Yo Ail - C O A L  - 0-OAOl 4- Wo-41, 

where Po, p4 are given by (G.30), and Po is also defined by (6.30) with 01 replaced by 02. 
Here 

where the y a r e  given by (6.461, (6.47) and the 6 by (7.31). 
We now substitute (7.33)-( 7.35) into (7.28) to obtain t.he following pair of equations: 

} (7.36) 

where 

1 (7.37) 

c2 = MCPO/dZl? co = MCWdOl, 

0 - -  -JcPoyz, 0- - - M : 4 2 Y l l z  

- ~ 0 2 d 0 2 f 0 2 ~ 2 1 '  O - ~ 0 2 d 0 2 f 0 2 d 0 1 '  

w2 = -3 ( P o s 2 2  + P 4 P 4 2  1, J d Z l  R02d02f02 R41d41f41 

where wo = wol (defined by (6.51)),  and yo is given by (6.50).  Computed values of the 
coefficients are given in table 5. Notice that the values of co are quite small in magni- 
tude, and hence are potentially subject to relatively large truncation errors. 

We proceed with the analysis as in the previous case. For aspect ratios slightly less 
than aB, a < aB, we define 

(7.38) 

whereupon the equations (7.36) become 
7 = M - Mt1, A = Mol - Mzl > 0,  

(7.39) I vZA2  = ?A2 - C ~ A ,  A, - r2A2A:  - wzA,3, 

v0 A ,  = (7 - A) A,  - yoA;  - c0 A; - c0 A ,  A; - uoA,3, 
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FIGURE 7. The bifurcation diagrams for Pr = 10 and 03 for a slightly less than a~ N_ 1-70, 
where A = M,, - M2,. Solid lines represent stable branches while dotted lines represent unstable 
branches. 

with an obvious abbreviated notation. The stability problem for a solution (A,, A,) of 
(7.39) is determined from the equations 

- 
Y z ( i 2  = (7 - C z A o  - CT,2; - 3~322;) a, - ( C 2 A 2  f ~CT,A,L?,) a,, 
yo  Ci, = - (2c,A2 + ~cT,B,A,) a2 + (7 - A - 2 ~ ~ 2 ,  - 3 ~ ~ 2 : )  a,. 

} (7.40) 

The solutions of (7.39) and their stability behaviour are locally sensitive to the 
signs of the constants yo and c, in table 5 ,  and hence to variation in Prandtl number. 
The behaviour for large Prandtl number is illustrated in figure 7. The conduction 
solution A ,  = A, = 0 loses stability a t  7 = 0, and the solution that bifurcates from 
this point is primarily an m = 2 mode, modified by the presence of a small m = 0 
component. The latter is due to the fact that  (7.39) have no non-trivial solutions with 
A, = 0, owing to the presence of the term coA;. This solution is represented by the 
curves OM, ON, OL in figure 7, and derives from the equations 

(7.41) 
4 = (7 - c 2  A, - +G)/%, 

0 = ( ~ - A ) A , - ~ , A ~ - c , A ~ - c T , A , A ~ - w , A ~ .  
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T 

FIGURE 8. The bifurcation diagrams for Pr = 10 and co for a slightly greater than clg N 1-70, 
where A = Mtl - Mil. Solid lines represent stable branches while dotted lines represent unstable 
branches. 

This solution is initially subcritical, but quickly turns around a t  the point J .  The 
branches to the right of J are stable. 

The solution bifurcating at the point 7 = A is given by 

A ,  = 0, T - A - ~ ~ A , - O J , A E  = 0. (7.42) 

This is identical with the transcritical solution described in 8 6.3, and is represented 
by the asymmetrical parabola QPR. However, the stability system shows that the 
branch PQ is stable (as in figure 4), but that the whole branch PR is now unstable. 

In particular we find that there is a value yS of 7, with 0 < vS < A, at which one of 
the stability exponents for the branch PR changes sign. From the corresponding 
point S on PR there is secondary bifurcation into a mixed-mode solution. This is 
actually a distinct solution of the equations (7.40), and is unstable. 

Reviewing the situation as shown in figure 7, we see that, well before 7 reaches 0, 
the system is likely to snap through to the axisymmetric branch PQ; otherwise, if 
it reaches close to 0, it  will eventually end up on the predominantly m = 2 solution 
OM, O N ,  OL. 
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Pr vzl x c2 x 10-I u2 x w2 x 10-2 vol x yo x co uo x 10-2 wo x 10-3 

0.1 0.40 0.22 6.9 11.0 3.6 0.36 - 19.0 1.6 1.7 
1.0 0.15 4.3 0.55 1.5 1.2 -0.21 - 1.4 0.22 0.21 

10.0 0.12 4.7 0.30 0.98 0.96 -0.26 0.40 0.15 0.14 
00 0.12 4.8 0.28 0.94 0.94 -0.27 0.57 0.14 0.13 

TABLE 5 

Thus, even though the m = 2 mode appears first according to  linear theory, i t  is 
less likely to be selected than the axisymmetric mode. 

For Prandtl numbers Pr = 0.1 and 1.0 the interactions are different near the bifur- 
cation points; the secondary branch emerging from 7 = qs opens to the left and joins 
with the solution out of 7 = 0. Thus, a closed loop in A, appears, analogous to that 
shown in figure 6. Similarly, the loop loses stability to time-periodic bifurcations 
whose orientation and stability are unknown. Again, we find that the axisymmetric 
mode emerges as the likely preferred mode when 7 > 0. 

We consider next the case where a is slightly greater than aB, a > aB, with 

7 = M-.M,,1, A = M,,-Mol > 0. (7.43) 

The governing equations are (7.39) with 7 and 7 - A  interchanged, and the stability 
equations are (7.40) with '1 and 7 - A  interchanged. The results again vary with 
Prandtl number, and the cases for Pr = 10 and co are shown in figure 8. 

The solution bifurcating from 7 = 0 is the transcritical axisymmetric solution 
given by 

represented by the curves PQ, PR in figure 8.  Calculations based on (7.40) show that 
the branch PQ is stable and PO is unstable, as in the non-interactive case depicted 
in figure 4, but that  OR, initially stable, loses stability at 7 = rS, where 0 < qs < A. 
This re-emphasizes the preference for the upper branch, discussed in 5 8. 

A,  = 0, 7 - YoA,-w,A;  = 0, (7.44) 

The solution bifurcating from 7 = A is a solution of the equations 

(7.45) 

It is found to exist for 7 > A and to be a slight modification of the pure m = 2 solution 
described in 5 6.2. This solution is represented by the curves AL, A M  and A N  in 
figure 8. Calculations show it  t o  be unstable. 

Finally, there is another solution of (7.45), which is a mixed mode and which 
bifurcates from the axisymmetric solution (7.44) a t  the point S.  This solution is 
represented by the curves S U ,  S V ,  ST in figure 8, and is found to be stable. 

We see, therefore, that  there are two stable solutions: the pure axisymmetric mode 
PQ, and the mixed mode emanating from S.  The latter represents a distortion of the 
lower branch due to the modal interaction. Nevertheless the upper branch PQ is 
preferred, as in the non-interactive situation. 

For Pr = 1.0 the branch QPR remains as i t  is, but for Pr = 0.1 i t  becomes reflected 
in the 7-axis. The portion PQ of this branch remains preferred since branch M A N  
inverts and connects up with USV to form a closed loop. 

1 A; = (7 - A  - c2A0 - r2 A ; ) / w 2 ,  

0 = ~ A , - y , A ; - c , A ~ - a , A , A ~ - w , A ~ .  
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8. Discussion and conclusions 
We have considered Marangoni instability in a circular cylinder under the simplify- 

ing assumptions that the upper free surface is non-deformable, i.e. C -+ 0,  and the 
side walls are adiabatic and impenetrable but ‘ slippery ’. 

The linear stability curves vary with surface Biot number L and Rayleigh number 
R as expected from the analyses of the unbounded layer, since the underlying eigen- 
value problems are identical. Mc decreases with R and increases with L;  these features 
are shown in figures 1-3. Here, the envelope of each set of curves gives Mc for each 
aspect ratio. Had we used the more-realistic rigid-side-wall boundary conditions, 
this envelope would have been modified. We would still expect to have interlacing 
of the modes, though the modes might interlace in a different sequence. Only the 
direct calculation of these neutral stability curves could determine this. We shall 
discuss below the implications of the use of slippery side-wall conditions. 

Given the qualitative similarities of cases for various values of L and R, we have 
investigated the nonlinear behaviour only for the single set L = 0, R = 0. We have 
selected five aspect ratios and performed the bifurcation analyses for these. 

The cases in $$6.1,  6.2 and 6.3  relate to aspect ratios corresponding to simple 
eigenvalues Mc for which m = 1 , 2 , 0 ,  respectively. We see that for m + 0 that we have 
supercritical bifurcation only. However, when m = 0, the axisymmetric convection 
is subcritical, and snap-through convection can be expected. It is only in this axisym- 
metric case that the flow direction is distinguished. For low Prandtl number Pr,  
there is downflow in the centre, while for all Pr 2 1 there is upflow in the centre. As 
is well-known, subcritical instabilities have associated transport values with hysteresis 
behaviour. It is easy to calculate the degree of subcriticality possible in the axi- 
symmetric mode, i.e. the value of AM/M,  a t  the nose of the curve. This varies from 
0.18 yo a t  Pr = 0-1 to 1.4 yo a t  Pr = 03. The only comparison available is with the 
results of Scanlon & Segel (1967), who examined an ‘infinitely deep’ layer having no 
side walls. In  their analysis they had Pr = 00 and found A M / M ,  = 2.3 yo. The two 
anaIyses are in reasonable agreement. This gives further substance to our feeling that 
our results reflect the inherent nonlinear behaviour of the system. 

The case dealt with in $ 7 . 1  examines a neighbourhood of a = aA of figure 1 where 
Mc is a double eigenvalue of modes m = 1 and 2. The nonlinear theory gives a coupled 
pair of nonlinear amplitude equations (7.15). The analysis shows (figure 6) that for a 
slightly larger than a, the first mode to appear (at M = M,) is the pure mode m = 2, 
as predicted by linear theory. As M is increased above M,, the system remains in this 
mode, and possibly no further transition is predicted. Alternatively, the system may 
progress through the sequence: pure m = 2, mixed (1 ,2) ,  mixed time-periodic, and 
perhaps pure m = 2, as discussed in $ 7 .  On the other hand, if a is slightly smaller 
than a, the transition sequence (figure 5 )  is compIeteIy different. Here, a t  M = M,, 
a mixed (1 ,2)  mode occurs, and this mode becomes unstable for an M > M,. Hence 
there must be a transition to the pure mode m = 2. We find then that the modem = 2 
may persist and be stable for M large enough on either side of a = a, independent 
of the prediction of linear theory. This result depends on the stability of the time- 
periodic mode, which has not been examined here but will be investigated further in 
later work. 

The case dealt with in $ 7.2 examines a neighbourhood of a = aB of figure 1 where 
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Mc is a double eigenvalue of modes m = 2 and 0.  The nonlinear theory gives a coupled 
pair of nonlinear amplitude equations (7.36). The analysis for Pr = 10 and 00 shows 
(figure 8) that for u slightly larger than uB the first mode to appear (at M = Mc) is 
the pure axisymmetric one. There is a snap-through at some M < Mc (the snap- 
through is accompanied by a dynamical hysteresis behaviour). With sufficiently small 
disturbances the system resides in this m = 0 mode for all M covered by the theory. 
Yet, for M large enough there can be a transition to the mixed (2,O) mode if the dis- 
turbances are large enough. On the other hand, if a is slightly smaller than uB (figure 7) 
very small disturbances snap through to a mixed ( 2 , O )  mode that is stable. There 
could be a snap-through transition (for large disturbances) to the pure rn = 0 mode. 
If M is then decreased, a dynamical hysteresis loop would be revealed, since the jump 
back to the mixed mode would usually occur a t  much lower values of M ;  conceivably 
in fact, the jump could be to the state of pure conduction. This interesting hysteresis 
loop could consist of three distinct states: mixed (2,0), pure m = 0, pure conduction. 
Alternatively, if the system is very noisy in that large disturbances are present, as 
M is increased from subcritical condition, the system could snap through directly 
from conduction (at M < Mc) to the axisymmetric state, and completely by-pass 
the mixed-mode state for increasing M ,  yet return to it when M is decreased. 

If the Prandtl number is Pr = 0.1 or 1.0, the situation is different. The mixed mode 
is always supercritical, and the pure m = 0 mode is encountered first and is stable. 

The above analysis should give a faithful representation of the nonlinear processes 
in fairly small containers in which Marangoni instability takes place. If the replacing 
of the ideal side walls with more realistic rigid walls does not change the sequence of 
the modal interlacings, then the theory could be applied to experiment in a straight- 
forward way. If the sequence of modal interlacings does change, then the theory 
should be applied by first locating the double eigenvalue by experimental observation. 
The location a = a,, say, would be different from that of the ‘slippery ’ wall linearized 
analysis. However, once it is located, the raising of M for aspect ratios a on either 
side of a, might be well represented by the above theory. It is thus a relatively simple 
observation of flow pattern that would initially need verification. 

There has been no previous nonlinear analysis of Marangoni convection in a bounded 
container. The present work represents a first exploration of the phenomena, albeit 
with an idealized model. The idealization on the upper free surface, C --f 0 ,  will be 
removed in our future work so that effects of free-surface deflection can be assessed. 
The dropping of idealization of slippery side walls entails a major computing program 
that will not be undertaken. Clearly, certain small imperfections on either the side 
walls or the free surface can lead to an imperfect bifurcation in which the predicted 
sharp instabilities become gradual changes. Our work here provides the framework 
for studying these effects as well. 

This work was supported by NASA-Lewis Research Center through Contract no. 
NAS3-22274. The authors are indebted to Dr P. H. Steen for valuable criticisms of an 
earlier version of the analysis. 
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Appendix 
The eigenfunctions X ( x ) ,  Y(x) satisfy a system derived from the linearized equations 

(4.3), (4.4), the boundary conditions (4.5), (4.6), and the forms (4.8). It is easy to show 
that these functions satisfy: 

(D ' -h ' )X+MY = 0, (A 1) 

(D2 - A')' Y - M-l Rh2X = 0, (A 2) 

X = Y = D Y = O  ( z = O ) ,  (A 3) 

(A 4) D X + L X  = Y = 0'Y+h2X = 0 (2 = 1) .  

Here D = d/dz,  h = smi/a, and the Rayleigh number R is considered to be the eigen- 
value. The adjoint problem follows from (5.7)-(5.1 i), (5.13), and satisfies 

(02-P)X*+M--1Rh2Y* = 0, (A 5) 

( 0 2 -  Y" - M X "  = 0, (A 6) 

(A 7 )  

(A 8) 

X"  = Y" = DY" = 0 (2 = O ) ,  

DX*+LX*+h2DY* = Y" = D2Y* = 0 ( z  = 1). 

Solutions for X ,  Y ,  X" ,  Y *  were determined using the Fourier-series method of Nield 
(1964). 

We use the normalizations 

x= 1 ( z  = l ) ,  (A 9) 

X" = 1 ( z  = 1) .  (A 10) 
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